Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Weather and Forecasting ; 38(4):591-609, 2023.
Article in English | ProQuest Central | ID: covidwho-2306472

ABSTRACT

The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and providing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future.Significance StatementDuring the summers of 2020/21, the PSU WRF-EnKF data assimilation and forecast system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), assimilating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather prediction model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion, real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting large-scale environments and representing atmospheric uncertainties as well.

2.
3rd International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2023 ; 2023-January:95-100, 2023.
Article in English | Scopus | ID: covidwho-2297320

ABSTRACT

Recent advances have introduced IoT as one of the key technologies globally. As safety remains a critical issue for those who spend much time outside. Automated security systems are very useful where safety is an important issue. With a prospect of a Zero User Interface (UI) model this work represents a novel IoT based smart vault security system. The system is built and designed based on IoT combining with Arduino-Uno and Bluetooth module. This system involves LDR sensor, IR sensor and Sonar sensor for monitoring. The vault provides security on three levels. Password protected entry to connect with the smartphone using Bluetooth module, IR sensor array to use 'secret gesture pattern' to unlock the door, tracking number of transactions from the vault using Sonar sensor and LDR was used as a switch. To avoid the replication of physical unlocking of objects IR sensor array was used to introduce 'secret gesture pattern' unlocking system through touchless interfaces for the avoidance of transmissive diseases like COVID-19. This novel system has substantial possibility as a security vault system for industrial and residential use in a contactless manner. © 2023 IEEE.

3.
2022 IEEE Region 10 International Conference, TENCON 2022 ; 2022-November, 2022.
Article in English | Scopus | ID: covidwho-2192090

ABSTRACT

One of the most pressing challenges facing restaurants since the COVID-19 outbreak began is personnel. A staffing scarcity across the business has resulted in a slew of issues, including significantly longer wait times and irritated clients. A robot waiter may make a huge impact in a restaurant in this situation. This research led to the formation of a low-cost Arduino-based Android application control Robot that can work as a restaurant waiter. The proposed model can follow a path, avoid obstacles, serve meals to a specific consumer, and return to the kitchen on its own. To precisely follow the line, the PID algorithm is utilized. To detect potential obstructions, a sonar sensor is used. On an LCD, messages and warnings are displayed. An Android app that allows the chief to select a particular table for serving meals. For convenience, the robot's current state is displayed in the application. Our testing results show that the robot performs satisfactorily over 90% of the time. It should be emphasized that the offered model is adaptable to any restaurant. © 2022 IEEE.

4.
Bulletin of the American Meteorological Society ; 103(2):103-105, 2022.
Article in English | ProQuest Central | ID: covidwho-1892031

ABSTRACT

Within this context, fundamental questions regarding the life cycle of convective clouds, aerosols, and pollutants have brought together a diverse, integrated, and interagency collaboration of scientists to collect and analyze measurements, in the Houston, Texas, area, from the summer of 2021 through the summer of 2022, with subsequent modeling studies to address these important research objectives. The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Facility and Atmospheric System Research (ASR) Program, the National Science Foundation’s (NSF’s) Physical and Dynamic Meteorology Program, the National Aeronautics and Space Administration’s (NASA’s) Tropospheric Composition Research and Health and Air Quality Applied Sciences Programs and the Texas Commission on Environmental Quality (TCEQ) are collaborating on a joint set of field campaigns to study the interactions of cloud, aerosol, and pollutants within the coastal, urban environment. Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). On the ground, multiple fixed and mobile radar systems (Fig. 1a) will be used to track convective cells and perform multi-Doppler analysis for the derivation of velocities within the convective systems over the course of their life cycle.

5.
Atmospheric Measurement Techniques ; 15(10):3243-3260, 2022.
Article in English | ProQuest Central | ID: covidwho-1871790

ABSTRACT

Doppler wind lidars (DWLs) have increasingly been used over the last decade to derive the mean wind in the atmospheric boundary layer. DWLs allow the determination of wind vector profiles with high vertical resolution and provide an alternative to classic meteorological tower observations. They also receive signals from altitudes higher than a tower and can be set up flexibly in any power-supplied location. In this work, we address the question of whether and how wind gusts can be derived from DWL observations. The characterization of wind gusts is one central goal of the Field Experiment on Sub-Mesoscale Spatio-Temporal Variability in Lindenberg (FESSTVaL). Obtaining wind gusts from a DWL is not trivial because a monostatic DWL provides only a radial velocity per line of sight, i.e., only one component of a three-dimensional vector, and measurements in at least three linearly independent directions are required to derive the wind vector. Performing them sequentially limits the achievable time resolution, while wind gusts are short-lived phenomena. This study compares different DWL configurations in terms of their potential to derive wind gusts. For this purpose, we develop a new wind retrieval method that is applicable to different scanning configurations and various time resolutions. We test eight configurations with StreamLine DWL systems from HALO Photonics and evaluate gust peaks and mean wind over 10 min at 90 m a.g.l. against a sonic anemometer at the meteorological tower in Falkenberg, Germany. The best-performing configuration for retrieving wind gusts proves to be a fast continuous scanning mode (CSM) that completes a full observation cycle within 3.4 s. During this time interval, about 11 radial Doppler velocities are measured, which are then used to retrieve single gusts. The fast CSM configuration was successfully operated over a 3-month period in summer 2020. The CSM paired with our new retrieval technique provides gust peaks that compare well to classic sonic anemometer measurements from the meteorological tower.

SELECTION OF CITATIONS
SEARCH DETAIL